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The Upper Colorado River Basin (UCRB) at a glance:

15% of area provides 90% of runoff (70% via snow)
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Precipitation
Contribution
Distribution

* The vast majority
of precipitation
events have small
accumulations
(>10 mm or 0.4”)

* The snowiest days
result from the
wettest days

50 T

% of Oct-Apr Wet Days
AN
o

ik
o
1

W
o
L

N
o
|

0

90th Percentile
14 mm

10 20 30 40
Daily Precipitation Increment (mm)

50



All Other

o SNOWY

The snowiest days drive 0
interannual variability of ~ ’

total snow accumulation ™

(but only account for @

~35% total snowpack) @ o

O

Snowpack provided by o "

snowiest days in a season 36N NS

provide best correlationto ...l | | Y | | |
streamflow (Kirk et al. 2017) MEW oW 10eW 108w nEW now | ioew 108w

0 0.2 0.4 0.6 0.8
r of all other days

0 0.2 0.4 0.6 0.8
2 of snowy days



Atmospheric Patterns Associated with Large
Precipitation Events

Strong moisture transport through Mojave Desert favors widespread
precipitation and snow accumulation in UCRB

Note deep low pressure trough <-0.5 -0.5-0 0.01-0.5 0.51-1.0 1.01-1.5 >1.5
off North American Coast Below Average Moisture Transport Above Average Moisture Transport

Kirk and Schmidlin (2018)
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Seasonal
Climatology of

UCRB Atmospheric
Conditions:

Drier

A Cluster Analysis
Approach
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Seasonal Climatology of Atmospheric Conditions
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Ridging (R)
and Dry
Transitional
(D

) Patterns

During the last 20
years ridging and
dry transitional
patterns are
becoming more
frequent
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Concluding Remarks

* Large snow accumulation events control variability in UCRB
* However, these only account for ~¥35% of total snowpack

* Dry Years
 More frequent ridging centered over WA-CA, prevents moisture transport into UCRB

* Ridging conditions and dry transitional regimes are becoming more prevalent
(especially in spring) during the last two decades

* Next steps: Examine teleconnections associated with persistent ridging

* Wet Years
* Wet years defined by more frequent large snowfall events
 Number of large snowfall events correlates positively with increased streamflow



